Cointime

扫码下载App
iOS & Android

Round 3-5 原理与代码讲解

项目方

由 EthStorage 特别赞助,Antalpha Labs 与 706 Creators 联合举办的 ZKP 零知识证明共学正顺利开展,大家踊跃讨论,互相帮助,积极主动分享—— 本篇文章就是由热心共学小伙伴 keep 带来关于 python 实现 PLONK 协议的讲解。

在 PLONK 协议中,Round 1 ~ 2 分别是对算术约束和复制约束的承诺,相对容易理解;在 Round 3 ~ 5 中,则主要是把门约束和门之间的一致性约束组合到一起,形成一个超大的多项式承诺。

1. 点值形式多项式的加法和乘法

有两个函数 f(x), g(x) ,  其系数形式如下:

其点值形式表示如下:

1.1 多项式加法

采用系数形式相加,容易得到 $f(x)+g(x)= 2x^2+1$。

采用点值形式相加,将相同 x 坐标对应的 y 值相加,得到:

不难看出,采用点值表示的多项式相加只要 将相同 x 坐标对应的 y 值相加即可,且结果与系数形式等价。

1.2 多项式乘法

采用系数形式相乘, 容易得到 $f(x)* g(x)= x^4+x^2$。

采用点值形式相乘,将相同 x 坐标对应的 y 值相乘,得到:

不难看出,采用点值表示的多项式相乘只要 将相同 x 坐标对应的 y 值相乘即可,且结果与系数形式等价。

2. Round3 Coset Operation

fft_extend/to_coset_extended_lagrange 的作用

  1. 将多项式的点值形式先转换为系数形式
  2. 再在系数形式后面补上 3* order 个 0,产生的多项式如下,然后再将系数多项式经过 fft 变成点值形式返回:
def to_coset_extended_lagrange(self, offset):        assert self.basis == Basis.LAGRANGE        group_order = len(self.values)        x_powers = self.ifft().values  # step1: 将多项式的点值形式通过 ifft 转换成系数形式 (f(x) = a_0+ a_1*x + a_2*x^2 + a_3*x^3 + ...+a_[order-1]*x^(order-1)        x_powers = [(offset**i * x) for i, x in enumerate(x_powers)] + [Scalar(0)] * (            group_order * 3        ) # step2: 将多项式表示为 f'(x) = a_0 + a_1*(offset *x) + a_2*(offsset*x)^2 + a_3*(offsset*x)^3 + ... +a_[order-1] * (offset *x)^(order-1) + 0*x^(order) +....+ 0*x^(4*order-1)        return Polynomial(x_powers, Basis.MONOMIAL).fft()  # 返回的结果用点值形式表示

对于

的多项式,假设 offset=1,扩展后的多项式满足

。简单的理解,就是将横坐标

映射到

def coset_extended_lagrange_test():    lagrange_poly = Polynomial(        # TODO(keep), 采用点值法表示,w =19540430494807482326159819597004422086093766032135589407132600596362845576832, 多项式点的坐标分别为 (w^0,1),(w^1,2),(w^2,3),....(w^7,8)        list(map(Scalar, [1, 2, 3, 4, 5, 6, 7, 8])), Basis.LAGRANGE         )    #原始多项式的点值表示:[1, 2, 3, 4, 5, 6, 7, 8]    print(f"original lagrange poly:{lagrange_poly.values}")    #原始多项式的系数表示:[10944121435919637611123202872628637544274182200208017171849102093287904247813, 16407567355707715082381689537916387329395994555403796510305004205827931381005, 21888242871839275220042445260109153167277707414472061641729655619866599103259, 16407567355707715086789610508212631171937308527291741914242101339246350165720, 10944121435919637611123202872628637544274182200208017171849102093287904247808, 5480675516131560135456795237044643916611055873124292429456102847329458329896, 2203960485148121921270656985943972701968548566709209392357, 5480675516131560139864716207340887759152369845012237833393199980747877114611]    print(f"original coeff poly:{lagrange_poly.ifft().values}")    #offset=1, 4 倍扩展后的多项式的点值表示,注意在 1/4/8/..的位置上值分别为 1/2/3... :[1, 10720100502214316017824502944044954065324060999235831025903844423091840349399, 9455244345631016631523862383826656817909262240618707851288319855253023724499, 2154739387933033111708037291544134707206872172371185076448386251812704236397, 2, 16557012320615716805371654510058109663243542056334255754346494402848129196434, 10961351032263120273117550959237409754492768732192557560880754261368126052155, 18363557546045068101357792595864568178482043948267994234220586583038506555553, 3, 6786126665617168635281695348901695604305505508243066572076512701156119512476, 12432998526208258595130464331726862113180416131685271896346981464741203555842, 17583891563112296716989958068669721717716064856305856073868243673723776631415, 4, 15235092695697612903221424418341788996225933052563558331936298540020231085964, 8526477789819225339470181130720054257555649678225561659213114114555273578202, 5748412396315429947679827564037304002141735973269128964907214524925412184424, 5, 8063712871896466710084708497040886506504371635794542014797783122244927830807, 12432998526208258595130464331726862113180416131685271896346981464741203555842, 6384725622872180445960462185068028976157210952995327774999033041321834967027, 6, 7423125919204651450688116196486815080908642277508115891487414498838949167610, 10961351032263120273117550959237409754492768732192557560880754261368126052155, 9959267747632339428749389803973233433288807182891237168523575569690515042210, 7, 1013927586174909651228671251775444917323622993703484604051271120508846640523, 9455244345631016631523862383826656817909262240618707851288319855253023724499, 12991963608384419706057798792240747034085871118455836070949939695446237712242, 8, 21753872925936258715284849814379405520357779078281283180193197937594190199291, 13327305889333084549971686500727188725472913714445501098547591469023253739310, 14366413615062333430482356679631362305114851397107572010875837406344246653236]    lagrange_coset_poly= lagrange_poly.to_coset_extended_lagrange(Scalar(1))    print(f"lagrange_coset_poly, offset=1:{lagrange_coset_poly.values}")    #offset=3, 4倍扩展后的多项式的点值表示,:[20675515612179202962216070186424682162618199731614332091699429061672282694725, 12176233492423905554052088791734959941094267405154917767703273057334496166085, 5917415089377289121590408955785178409647352913589873293489444488775637989917, 2752516302388842277837843623414582965521620079164918619152523122629779608930, 4169562684247585045898683445974163076520306259872602444382940816087435294801, 405974129629722533167980246725276196790448647122578773059926554710976033469, 16015793353021219580113202927438566307249046400631465629394870428808273269385, 10229243472545473685325496616621056338434159122035619201636505490363604037700, 4169562684247576371110213902966280955214409584396047496175782248639266976338, 5253968865549839538799666481628166409324748755474067887542850034795390306731, 5448982845895345419151791205795466600592293409442070602404591982746410109803, 6744796520889898167112801401869255476407161332739834968662727069566758151892, 1212727259660075433733434172128159555676224428122393086708711186165050793241, 322967646151623184877638486520441134119498412968113624552408193959018243483, 18024183386365665400514884144185330956959959158139700997404651630096754818232, 19482052846986908588806741073994758113640633859705256434234817575288965077623, 1212727259660075433733434172128159555676224428122393086708711186165050794882, 15659316895809636090874968052002070000216252850695980391535423378600348077893, 18315716487236118541742198333943662698829243458507744564312431379090458965882, 10510595262562575074793025571744230189431857025973620441791605645111860961441, 17718680187591687002644623685987545382281998381222741064605327309226848205368, 20159325449435371029217238441388109380740194409091738508163099259089186272494, 18587891620308261463443330180410826574514602508103652153546608225475836828557, 394344664035779568888350307535643007895240871168234908270745822756040235999, 17718680187591695677433093228995427503587895056699296012812485876675016525145, 18932442747777939648604146512737863718784200643866598521373172345132630858224, 14094371321169798076091610182981744959720702465139535664999676136322953049480, 18314296007598656137037071170514820954670799413013319519063761129019823716627, 20675515612179202962216070186424682162618199731614332091699429061672282698004, 14642742260579063309391895968292213573123846477290141900862663922681188024125, 13036860255822678508584602795745598935228621688526128812938746661562717446865, 19125126410348967389184293215334753308191985897863333281980130891566402192292]    lagrange_coset_poly= lagrange_poly.to_coset_extended_lagrange(Scalar(3))    print(f"lagrange_coset_poly, offset =3 :{lagrange_coset_poly.values}")    #offset =3, 消除4倍扩展后,多项式的系数表示,前8项系数不为0,剩余部分的系数均为0:[10944121435919637611123202872628637544274182200208017171849102093287904247813, 16407567355707715082381689537916387329395994555403796510305004205827931381005, 21888242871839275220042445260109153167277707414472061641729655619866599103259, 16407567355707715086789610508212631171937308527291741914242101339246350165720, 10944121435919637611123202872628637544274182200208017171849102093287904247808, 5480675516131560135456795237044643916611055873124292429456102847329458329896, 2203960485148121921270656985943972701968548566709209392357, 5480675516131560139864716207340887759152369845012237833393199980747877114611, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]    # 前8项系数与原始多项式的系数相同。    coeff_coset_poly1 = lagrange_coset_poly.coset_extended_lagrange_to_coeffs(Scalar(3))    print(f"coeff_coset_poly, offset =3:{coeff_coset_poly1.values}")

3. Round3 扩展 ZH(x)

如果 offset =1,ZH 扩展后的多项式在

处的值都是 0,考虑到 ZH(x) 是计算商多项式的分母 ( 见下图 ), 为了使 ZH(x) 不为 0,因此取 offset != 1,可以简单的理解为取横坐标=

4. Round5 计算 r(x)

5. Round5 计算 q(x)

评论

所有评论

推荐阅读

  • 6月9日晚间重要动态一览

    12:00-21:00关键词:Turnkey、美国加州、Strategy、Tether 1.Tether在Tron网络铸造10亿枚USDT 2.加密钱包Turnkey完成3000万美元B轮融资 3.美国加州州长纽森:将对特朗普政府提起诉讼 4.Strategy上周耗资1.1亿美元购入1045枚比特币 5.中美经贸磋商机制首次会议在英国伦敦开始举行 6.Tether计划第四季度开源比特币矿机操作系统MOS 7.CoinShares:上周数字资产投资产品净流入2.86亿美元 8.The Blockchain Group联合TOBAM启动3亿欧元比特币增资计划

  • 中美经贸磋商机制首次会议在英国伦敦开始举行

    当地时间6月9日,中共中央政治局委员、国务院副总理何立峰与美方在英国伦敦开始举行中美经贸磋商机制首次会议。

  • 特朗普:密切关注洛杉矶,将向任何地方派军

    美国总统特朗普8日就加利福尼亚州洛杉矶骚乱表示,联邦政府“将向任何地方派遣军队”。美国军方同一天说,大约500名海军陆战队人员正在待命。特朗普告诉媒体记者,洛杉矶的抗议活动是“暴乱”,“我们将向任何地方派遣军队”,“不会让施暴者逍遥法外”。

  • 花旗:预计美联储将在2026年1月和3月(累计)降息50个基点

    花旗:预计美联储将在2026年1月和3月(累计)降息50个基点。

  • 特朗普称决不允许国家撕裂

    美国总统特朗普当地时间6月8日下午在新泽西州换乘“空军一号”登机前对媒体表示,洛杉矶存在“暴力分子”,“还冲执法人员吐口水、投掷东西”,但他们“吐口水就得挨揍”,“他们休想逍遥法外”。当被问及是否计划向洛杉矶派遣军队时,特朗普回应称,“我们将在各地部署军队,绝不允许国家被撕裂,不会重蹈拜登任内的覆辙。”特朗普同时警告称,阻挠非法移民驱逐行动的加州官员将面临指控。

  • 美联储任命 Michael Horowitz 担任新一任监察长,负责内部监督

    美联储近日宣布,迈克尔·霍洛维茨(Michael Horowitz)将出任美联储新任监察长。霍洛维茨接替自 2011 年起担任该职并于今年4月退休的Mark Bialek。作为美联储监察长,他还负责对消费者金融保护局(CFPB)进行独立监督。他此前的职务是司法部监察长(IG)。美联储的监察长是由主席挑选的,这在政府监管机构中不同寻常。一些参议员认为,这种安排使监察长无法对美联储进行真正的监督,他们已提出立法,要求由总统来挑选监察长,然后经参议院确认。在美联储内幕交易风波后,美联储监察长成为公众关注的焦点,该机构负责评判一些联储官员的交易行为是否符合道德要求。

  • 去中心化人工智能公司RabitiAI完成500万美元融资

    去中心化人工智能公司RabitiAI宣布完成500万美元融资,Nortiyus领投,新资金拟用于支持其构建工具和基础设施,使用户能够在基于跨区块链的架构上部署和管理人工智能模型,目前其解决方案主要应用于医疗、金融和物流等领域,预计将于今年Q3发布企业级商业版本去中心化AI工具。

  • 日本参议院通过《资金结算法》修正案,确立加密资产中介业新制度

    日本参议院于 6 月 6 日通过《资金结算法》修正案,确立 “加密资产中介业” 新制度,允许企业在无需注册为加密资产交换业者的前提下,从事撮合服务,旨在降低市场准入门槛、推动加密金融创新。 修正案还新增 “国内保有命令”条款,赋予政府在必要时命令平台将部分用户资产留存在日本境内的权力,以防止类似 FTX 破产事件造成的资产外流风险。新法预计将在公布日起一年内正式施行。

  • 何立峰将访问英国并举行中美经贸磋商机制首次会议

    外交部发言人宣布:应英国政府邀请,中共中央政治局委员、国务院副总理何立峰将于 6 月 8 日至 13 日访问英国。其间,将与美方举行中美经贸磋商机制首次会议。

  • Web3数据和AI公司Validation Cloud完成1000万美元新一轮融资

    Web3数据和AI公司Validation Cloud宣布从True Global Ventures获得1000万美元融资,该公司计划利用这笔资金扩展其AI产品,实现对Web3数据的无缝访问。 据介绍,该公司的产品平台由三个部分组成:质押、节点API以及数据和AI。在质押方面,Validation Cloud的质押资产已超过10亿美元。Validation Cloud的一些客户包括 Chainlink、Aptos、Consensys、Stellar和Hedera。