Cointime

扫码下载App
iOS & Android

什么是零知识机器学习(ZKML)?看完这篇你就知道了!

原文链接:An introduction to zero-knowledge machine learning (ZKML)

本文作者:Worldcoin;编译:Cointime Freya

零知识机器学习(ZKML)是最近在密码学领域引起轰动的一个研究和开发领域。但是它到底是什么?为什么它是有用的呢?首先,让我们把这个术语分解成它的两个组成部分,并解释它们是什么。

什么是零知识证明?

零知识证明是一种加密协议,在这种协议中,其中一方(即证明者)可以向另一方(即验证者)证明一个给定的陈述是真实的,而无需透露除了该陈述是真实的这一事实以外的任何其他信息。这是一个在各个方面都取得巨大进展的研究领域。

零知识证明带来的两个主要“原语”(或构建块)是能够为一组给定计算创建计算完整性证明,其中,证明比执行计算本身要容易得多。(我们将这种属性称为“简洁性”)零知识证明还提供了在保持计算正确性的同时隐藏部分计算的选项。(我们将这种属性称为“零知识”)

生成零知识证明的计算量非常大,大约是原始计算的100倍。这意味着有一些计算是无法计算零知识证明的,因为在现有的最佳硬件上创建它们所需要的时间使得它们不切实际。然而,近年来密码学、硬件和分布式系统领域的进步,使得零知识证明在更密集的计算中变得可行。这些进步已经允许创建可以使用密集计算证明的协议,从而扩大了新应用程序的设计空间。

零知识证明案例

零知识密码学是Web3领域最受欢迎的技术之一,因为它允许开发者构建可扩展和/或私有的应用程序。以下是一些实际应用的例子:

1)使用ZK rollup扩展以太坊:

  • Starknet
  • Scroll
  • Polygon Zero, Polygon Miden, Polygon zkEVM
  • zkSync

2)构建保护隐私的应用程序:

  • Semaphore
  • MACI
  • Penumbra
  • Aztec Network

3)身份原语和数据来源:

  • WorldID
  • Sismo
  • Clique
  • Axiom

4)第一层协议:

  • Zcash
  • Mina

随着ZK技术的成熟,我们相信会出现新应用程序的寒武纪爆发,因为用于构建它们的工具将需要更少的领域专业知识,并且对于开发人员来说将更加易于使用。

机器学习(ML)

机器学习是人工智能的一个领域,它使计算机能够自动学习并从经验中改进,而无需明确地编程。它涉及使用算法和统计模型来分析和识别数据中的模式,然后根据这些模式做出预测或决策。

机器学习的最终目标是开发能够在没有人为干预的情况下,自行适应和学习的智能系统,并解决医疗、金融和、以及交通等各个领域的复杂问题。最近,你可能已经看到了大型语言模型(如ChatGPT、Bard)或文本到图像模型(如DALL-E 2、Midjourney或Stable Diffusion)的进步。随着这些模型变得越来越好,并且能够执行更广泛的任务,知道是谁执行了这些操作将非常重要。

ZKML的动机和当前的努力

由人工智能/机器学习生成的内容,与人类生成的内容变得越来越难以区分。零知识密码学将使我们能够做出如下陈述:“给定的内容C来自应用于某个输入X的模型M” 我们将能够验证给定的输出是由大型语言模型(如ChatGPT)、文本到图像模型(如DALL-E 2)或我们为其创建零知识电路表示的任何其他模型创建的。这些证明的零知识属性还允许我们在需要时隐藏部分输入或模型。一个典型的例子是在一些敏感数据上应用机器学习模型,用户将能够在不向任何第三方透露他们的输入的情况下,知道模型对其数据的推理结果(例如,医疗行业)。

注意:当我们谈论ZKML时,我们谈论的是创建ML模型推理步骤的零知识证明,而不是ML模型训练(它本身已经是非常密集的计算了)。零知识系统的当前技术水平与高性能硬件,仍然无法证明与当前可用的大型语言模型(“LLM”)一样大的东西,还差几个数量级,但在创建较小模型的证明方面已经取得了一些进展。

我们在为ML模型创建证明的上下文中,对零知识密码学的技术现状做了一些研究,并创建了属于该领域的相关研究、文章、应用程序和代码库的聚合。关于ZKML的资源可以在GitHub上ZKML社区的awesome-zkml存储库中找到。

Modulus Labs团队最近发布了一篇题为 "智慧的代价 "的论文,他们在论文中对现有的ZK证明系统与各种不同规模的模型进行了基准测试。目前,使用像plonky2这样的证明系统,在强大的AWS机器上运行大约50秒,就可以为大约18M参数的模型创建证明。以下是该论文中的一张图表:

另一个致力于提高ZKML系统技术水平的举措是Zkonduit的ezkl库,它允许你创建使用ONNX导出的ML模型的ZK证明。这使得任何ML工程师都可以为其模型的推理步骤创建ZK证明,并向任何正确实现的验证器证明输出。

有几个团队致力于改进ZK技术,创建针对ZK证明内部操作的优化硬件,并为特定用例构建这些协议的优化实现。随着技术的成熟,更大的模型将在更短的时间内在功能较弱的机器上进行ZK证明。我们希望这些进步能够允许出现新的ZKML应用程序和用例。

潜在的用例

为了确定ZKML是否可以用于给定的应用程序,我们可以检查ZK密码学的属性如何解决机器学习的问题。这可以用维恩图来说明:

定义:

  1. 启发式优化:一种解决问题的方法,使用经验法则或“启发式”来找到使用传统优化方法难以解决的问题的良好解决方案。启发式优化方法不是试图找到问题的最佳解决方案,而是考虑到问题对整个系统的相对重要性以及优化的难度,在合理的时间内找到一个好的或“足够好的”解决方案。
  2. FHE ML:完全同态加密ML允许开发者以保护隐私的方式训练和评估模型;但是,没有办法像ZK证明那样,以加密方式证明正在执行的计算的正确性。
  3. ZK与有效性:这些术语在业界经常互换使用,因为有效性证明是不隐藏部分计算或其结果的ZK证明。在ZKML的上下文中,大多数应用程序都在利用ZK证明的有效性证明方面。
  4. 有效性ML-ML模型的ZK证明:其中没有将任何计算或结果保密。它们证明了计算正确性。

下面是一些潜在的ZKML用例示例:

1. 计算完整性(有效性ML)

1)Modulus Labs

  • 链上可验证的ML交易机器人RockyBot
  • 自我改进视觉的区块链(示例);
  • 使用智能功能增强Lyra金融期权协议AMM;
  • 为Astraly(ZK oracle)创建一个透明的基于AI的信誉系统;
  • 使用ML for Aztec Protocol(具有隐私功能的zk rollup),努力实现合同级合规工具所需的技术突破,

2)ML作为服务(MLaaS)的透明度

3)ZK异常/欺诈检测

  • 允许为可利用性/欺诈创建ZK证明。异常检测模型可以在智能合约数据上进行训练,并由 DAO同意作为有趣的指标,以便能够自动化安全程序,例如以更积极、预防性的方式暂停合约。已经有初创公司考虑在智能合约环境中使用ML模型以实现安全目的,因此ZK异常检测证明是自然而然的下一步。

4)ML推理的一般有效性证明:能够轻松地证明和验证输出是给定模型和输入对的产物。

5)隐私(ZKML)。

6)去中心化Kaggle:证明一个模型在某些测试数据上的准确率大于x%,而不透露权重。

7)保护隐私的推理:将对私人患者数据的医学诊断输入模型,并将敏感的推理(例如,癌症测试结果)发送给患者。

2. Worldcoin

1)IrisCode的可升级性:World ID用户将能够在他们的移动设备的加密存储中,自我托管他们的生物识别特证,下载用于IrisCode生成的ML模型,并在本地创建一个零知识证明,证明他们的IrisCode已成功创建。然后,这个IrisCode可以无许可地插入到注册的Worldcoin用户集中,因为接收的智能合约将能够验证零知识证明,从而验证IrisCode的创建。这意味着,如果Worldcoin升级机器学习模型,以破坏与其先前迭代的兼容性的方式创建IrisCode,那么用户就不必再次访问Orb,而是可以在本地设备上创建这个零知识证明。

2)Orb安全性:目前,Orb在其信任环境中实施了多种欺诈和篡改检测机制。然而,我们可以创建一个零知识证明,证明这些机制在拍摄图像和生成IrisCode时是有效的,以便为Worldcoin协议提供更好的有效性保证,因为我们可以完全确定,这些机制将在整个IrisCode生成过程中运行。

了解更多信息并做出贡献

2022年下半年,在ZKML领域工作的几个不同的团队和个人聚集在一起,创建了ZKML社区。这是一个开放的社区,其成员在这里讨论ZKML领域的最新研究和实验,并分享他们的发现。如果你想了解有关ZKML的更多信息,并开始与该领域的工作人员交谈,那么,这里是提问和熟悉该主题的好地方。

*本文由CoinTime整理编译,转载请注明来源。

评论

所有评论

推荐阅读

  • 美FDIC拟为寻求发行支付稳定币的受监管机构建立申请程序

    美国联邦存款保险公司(FDIC)宣布批准一项拟议规则,为寻求发行支付稳定币、并且受联邦存款保险公司监管的机构建立申请程序,目前已开启为期 60 天的公众评论期,据悉这是《GENIUS 法案》 “美国稳定币创新法案 ”通过后首个正式的规则制定提案。

  • BTC突破88000美元

    行情显示,BTC突破88000美元,现报88002.21美元,24小时涨幅达到1.34%,行情波动较大,请做好风险控制。

  • Bitwise认为2026年处于加密货币牛市并发布十大预测

    Bitwise认为2026年将是加密货币牛市的一年。从机构采用到监管进步,加密货币目前积极的趋势过于强劲,难以长期被压制。以下是Bitwise对未来一年的十大预测。 预测 1:比特币将打破四年周期,创下历史新高。 预测 2:比特币的波动性将低于英伟达。 预测 3:随着机构需求加速,ETF将购入超过100%的新增比特币、以太坊和Solana供应量。 预测 4:加密货币股票的表现将优于科技股。 预测 5:Polymarket 的未平仓合约量将创下历史新高,超过 2024 年大选时的水平。 预测 6:稳定币将被指责破坏新兴市场货币的稳定。 预测 7:链上金库(又称“ETF 2.0”)的资产管理规模将翻一番。 预测 8:以太坊和 Solana 将创下历史新高(如果 CLARITY 法案获得通过)。 预测9:常春藤盟校一半的捐赠基金将投资加密货币。 预测10:美国将推出超过100只加密货币挂钩ETF。 额外预测:比特币与股票的相关性将会下降。

  • 中国置业投资计划购买并持有BNB作为战略储备资产

    中国置业投资(00736)发布公告,为推进公司资产配置多元化及把握数字经济发展机遇的战略,已决议公司计划使用自有资金,在遵守相关法律法规及风险管控的前提下,于公开市场购买并持有BNB (Binance Coin)及其他合适的数字资产,作为公司的战略储备资产。公司长期看好数字资产行业的发展前景,并对BNB所依托的运营主体及其技术研发、生态布局与行业竞争力抱有充分信心,认可其在区块链领域的长期发展潜力与价值成长空间。 该计划拟动用的资金全部来源于公司现有的自有资金,资金调配符合公司财务管理规範及整体经营规划,不会影响公司日常业务的正常开展。董事会将根据市场情况,在授权额度内分批实施购买。

  • 美国白宫国家经济委员会主任哈塞特:在供应方面出现积极冲击的情况下,降息仍存在许多空间。

    美国白宫国家经济委员会主任哈塞特:在供应方面出现积极冲击的情况下,降息仍存在许多空间。

  • 稳定币支付公司 RedotPay 完成 1.07 亿美元 B 轮融资

    专注于稳定币支付的香港金融科技公司 RedotPay 宣布完成 1.07 亿美元 B 轮融资,Goodwater Capital 领投,Pantera Capital、Blockchain Capital 和 Circle Ventures,以及现有投资者 HSG(前身为红杉资本中国)参投。

  • 币安 Alpha 将于 22:00 上线 Theoriq(THQ)

    币安 Alpha 上线 Theoriq(THQ),Alpha 交易将于 2025 年 12 月 16 日 22:00(UTC+8)开始。持有至少 220 个币安 Alpha 积分的用户可申领代币空投。在 Alpha 活动页面申领 400 个 THQ 代币空投。 本次活动采用“扣分递减”模式,活动开始的第一分钟,申领空投将消耗 30 个币安 Alpha 积分。若活动未结束,此后每过一分钟,领取所需消耗的积分将减少 1 分,最低可降至 10 个积分。

  • 美国10月政府部门就业人口大减15.7万人

    美国劳工统计局公布11月非农报告和10月部分非农数据,数据显示,美国11月非农就业人数增加6.4万人,各行业中,增幅最大的是医疗保健和社会援助行业,为6.4万人,减幅最大的是运输和仓储行业,为减少1.77万人。10月份非农就业人数大减10.5万人,其中减幅最大的是政府部门,大减15.7万人,为连续两个月录得就业岗位减少;增幅最大的是医疗保健和社会援助行业,为增加6.46万人。

  • 美国10月就业人数出现2020年底以来的最大降幅

    美国劳工统计局周二公布的数据显示,11月份非农就业人数增加了6.4万人,而10月份减少了10.5万人。上个月的失业率为4.6%,高于9月份的4.4%,为2021年以来的最高水平。美国劳工统计局不得不放弃公布10月份的失业率,因为它无法在政府关门后追溯收集该数据。而10月份就业人数的下降是自2020年底以来的最大降幅,原因是参加特朗普政府的买断辞职计划的工人正式退出就业名单,联邦政府就业人数减少了16.2万人。

  • 美国11月失业率意外上升或引发美联储关注 劳动参与率回升料缓解部分担忧

    分析师Anstey速评美国非农报告指出,11月非农就业数据小幅高于预期,录得6.4万个。11月失业率意外升至4.6%,这可能引起美联储的关注。不过劳动参与率有所上升,因此失业率的上升未必完全是坏消息,我们还需细看具体数据。美国股指期货走高,两年期美债收益率下跌——基于过去数月非农就业数据的疲软表现,市场对美联储进一步放宽货币政策的预期有所升温。需注意的是,8月和9月的数据也被合计下修了3.3万。